Properties and Degradation of Novel Fully Biodegradable PLA/PHB Blends Filled with Keratin

角蛋白填充新型完全可生物降解 PLA/PHB 共混物的性能及降解

阅读:5
作者:Katarína Mosnáčková, Alena Opálková Šišková, Angela Kleinová, Martin Danko, Jaroslav Mosnáček

Abstract

The utilization of keratin waste in new materials formulations can prevent its environmental disposal problem. Here, novel composites based on biodegradable blends consisting of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB), and filled with hydrolyzed keratin with loading from 1 to 20 wt % were prepared and their properties were investigated. Mechanical and viscoelastic properties were characterized by tensile test, dynamic mechanical thermal analysis (DMTA) and rheology measurements. The addition of acetyltributyl citrate (ATBC) significantly affected the mechanical properties of the materials. It was found that the filled PLA/PHB/ATBC composite at the highest keratin loading exhibited similar shear moduli compared to the un-plasticized blend as a result of the much stronger interactions between the keratin and polymer matrix compared to composites with lower keratin content. The differences in dynamic moduli for PLA/PHB/ATBC blend filled with keratin depended extensively on the keratin content while loss the factor values progressively decreased with keratin loading. Softening interactions between the keratin and polymer matrix resulted in lower glass transitions temperature and reduced polymer chain mobility. The addition of keratin did not affect the extent of degradation of the PLA/PHB blend during melt blending. Fast hydrolysis at 60 °C was observed for composites with all keratin loadings. The developed keratin-based composites possess properties comparable to commonly used thermoplastics applicable for example as packaging materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。