Thermally Induced Morphological and Structural Transformations on Eu2+/Eu3+-Coactivated Calcium Silicate Nanophosphors

Eu2+/Eu3+ 共活化硅酸钙纳米荧光粉的热诱导形貌和结构转变

阅读:14
作者:Hyun-Joo Woo, Kay Hadrick, Taeho Kim

Abstract

This study presents an approach for synthesizing Eu2+/Eu3+-coactivated Ca2SiO4 nanophosphors, by adjusting the ratio of both activators within a singular host material. Utilizing a hydrothermal method complemented by a postreduction sintering process, we fabricated a series of phosphors characterized by uniform 30-50 nm spherical nanoparticles. These engineered phosphors manifest multichannel luminescence properties and exhibit simultaneous blue and red emission from Eu2+ and Eu3+, respectively. Meticulous control of the 5% H2-95% N2 reduction temperature allowed for precise tuning of the Eu2+ and Eu3+ ions within the host lattice, which enabled the strategic adjustment of their luminescent outputs. Utilizing X-ray photoelectron spectroscopy (XPS), we could discern subtle alterations in the europium oxidation state. By using a transmission electron microscope (TEM) and an X-ray diffractometer (XRD), we found that the subsequent changes by reductive sintering to particle size, morphology, and mixed crystal structures influenced the materials' luminescent characteristics. Our findings herald a significant advancement in solid-state lighting, with the potential for the use of Eu2+/Eu3+-coactivated calcium silicate nanophosphors to develop white light emission technologies endowed with enhanced color rendering and luminous efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。