TGF-β autocrine pathway and MAPK signaling promote cell invasiveness and in vivo mammary adenocarcinoma tumor progression

TGF-β自分泌通路和MAPK信号促进细胞侵袭和体内乳腺腺癌肿瘤进展

阅读:5
作者:María Cecilia Daroqui, Paula Vazquez, Elisa Bal de Kier Joffé, Andrei V Bakin, Lydia I Puricelli

Abstract

Breast cancer progression and metastasis have been linked to abnormal signaling by transforming growth factor-β (TGF-β) cytokines. In early-stage breast cancers, TGF-β exhibits tumor suppressor activity by repressing cell proliferation and inducing cell death, whereas in advanced-stage tumors, TGF-β promotes invasion and metastatic dissemination. The molecular mechanisms underlying pro-oncogenic activities of TGF-β are not fully understood. The present study validates the role of TGF-β signaling in cancer progression and explores mediators of pro-oncogenic TGF-β activities using the LM3 mammary adenocarcinoma cell line, derived from a spontaneous murine mammary adenocarcinoma. Expression of kinase-inactive TGF-β receptors decreased both basal and TGF-β-induced invasion. Analysis of signal transduction mediators showed that p38MAPK and MEK contribute to TGF-β stimulation of cell motility and invasion. TGF-β disrupted the epithelial actin structures supporting cell-cell adhesions, and increased linear actin filaments. Moreover, MEK and p38MAPK pathways showed opposite effects on actin remodeling in response to TGF-β. Blockade of Raf-MEK signaling enhanced TGF-β induction of actin stress-fibers whereas p38MAPK inhibitors blocked this effect. A novel observation was made that TGF-β rapidly activates the actin nucleation Arp2/3 complex. In addition, TGF-β stimulated matrix metalloproteinase MMP-9 secretion via a MAPK-independent pathway. Experiments using syngeneic mice showed that kinase-inactive TGF-β receptors inhibit the first stages of LM3 tumor growth in vivo. Our studies demonstrate that autocrine TGF-β signaling contributes to the invasive behavior of mammary carcinoma cells. Moreover, we show that both MAPK-dependent and -independent pathways are necessary for TGF-β-induced effects. Therefore, MEK-ERK and p38 MAPK pathways are potential venues for therapeutic intervention in pro-oncogenic TGF-β signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。