Strategies for Increasing the Depth and Throughput of Protein Analysis by plexDIA

增加 plexDIA 蛋白质分析深度和通量的策略

阅读:4
作者:Jason Derks, Nikolai Slavov

Abstract

Accurate protein quantification is key to identifying protein markers, regulatory relationships between proteins, and pathophysiological mechanisms. Realizing this potential requires sensitive and deep protein analysis of a large number of samples. Toward this goal, proteomics throughput can be increased by parallelizing the analysis of both precursors and samples using multiplexed data independent acquisition (DIA) implemented by the plexDIA framework: https://plexDIA.slavovlab.net. Here we demonstrate the improved precisions of retention time estimates within plexDIA and how this enables more accurate protein quantification. plexDIA has demonstrated multiplicative gains in throughput, and these gains may be substantially amplified by improving the multiplexing reagents, data acquisition, and interpretation. We discuss future directions for advancing plexDIA, which include engineering optimized mass-tags for high-plexDIA, introducing isotopologous carriers, and developing algorithms that utilize the regular structures of plexDIA data to improve sensitivity, proteome coverage, and quantitative accuracy. These advances in plexDIA will increase the throughput of functional proteomic assays, including quantifying protein conformations, turnover dynamics, modifications states and activities. The sensitivity of these assays will extend to single-cell analysis, thus enabling functional single-cell protein analysis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。