Effects of MITF on marker protein expression of multivesicular bodies and miRNA omics of extracellular vesicles of mice melanocyte cell line

MITF对小鼠黑素细胞系多泡体标志蛋白表达及细胞外囊泡miRNA组学的影响

阅读:21
作者:Lijun Zhao, Hongyu Han, Yang Li, Quanhai Pang

Abstract

Extracellular vesicles (EVs) are heterogeneous membrane-bound complexes of cell-derived and nanosized structures originating from the endosomal system and subsequently released from the plasma membrane. EVs contribute significantly to intercellular communication and are involved in pigmentation processes that rely on tight communication between keratinocytes and melanocytes in the epidermis. Microphthalmia-associated transcription factor (MITF) induces melanogenesis and modulates the expression factors involved in melanosome biogenesis, maturation and dispersal in melanocytes. Here, we evaluated the effects of MITF on the fate of multivesicular bodies and the biogenesis of extracellular vesicles of melanocytes. It was found that MITF increased the expression of subunits of the endosomal sorting complex, required for transport (ESCRT), including VPS37, VPS36B, and tetraspanin CD81, which are key mediators of multivesicular body biogenesis. Over 110 miRNAs, including miR-211-5p, miR-335-5p, let-7g-5p and miR-28a-3p, were differentially expressed in melanocyte-derived EVs after overexpression of MITF in melanocytes. These miRNAs have been reported to be key regulators of plasma protein binding, changes in the cell membrane system and transferase activity. These results suggest that while enhancing melanogenesis, melanocytes may mediate intercellular communication with surrounding cells by serving as EV delivery vehicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。