Pharmacodynamics-based approach for efficacious human dose projection of BMS-986260, a small molecule transforming growth factor beta receptor 1 inhibitor

基于药效学的方法预测 BMS-986260(一种小分子转化生长因子 β 受体 1 抑制剂)对人体的有效剂量

阅读:9
作者:Karen E Parrish, Jesse Swanson, Lihong Cheng, Emily Luk, Paul Stetsko, James Smalley, Yue-Zhong Shu, Jinwen Huang, Jonathan G Pabalan, Yongnian Sun, Tatyana Zvyaga, Mary Ellen Cvijic, James Burke, Robert Borzilleri, Anwar Murtaza, Karen Augustine, Zheng Yang

Abstract

Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that has a wide array of biological effects. For decades, tumor biology implicated TGF-β as an attractive therapeutic target due to its immunosuppressive effects. Toward this end, multiple pharmaceutical companies developed a number of drug modalities that specifically target the TGF-β pathway. BMS-986260 is a small molecule, selective TGF-βR1 kinase inhibitor that was under preclinical development for oncology. In vivo studies across mouse, rat, dog, and monkey and cryopreserved hepatocytes predicted human pharmacokinetics (PK) and distribution of BMS-986260. Efficacy studies of BMS-986260 were undertaken in the MC38 murine colon cancer model, and target engagement, as measured by phosphorylation of SMAD2/3, was assessed in whole blood to predict the clinical efficacious dose. The human clearance is predicted to be low, 4.25 ml/min/kg. BMS-986260 provided a durable and robust antitumor response at 3.75 mg/kg daily and 1.88 mg/kg twice-daily dosing regimens. Phosphorylation of SMAD2/3 was 3.5-fold less potent in human monocytes than other preclinical species. Taken together, the projected clinical efficacious dose was 600 mg QD or 210 mg BID for 3 days followed by a 4-day drug holiday. Mechanism-based cardiovascular findings in the rat ultimately led to the termination of BMS-986260. This study describes the preclinical PK characterization and pharmacodynamics-based efficacious dose projection of a novel small molecule TGF-βR1 inhibitor.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。