Tarloxotinib Is a Hypoxia-Activated Pan-HER Kinase Inhibitor Active Against a Broad Range of HER-Family Oncogenes

Tarloxotinib 是一种缺氧激活的泛 HER 激酶抑制剂,可有效对抗多种 HER 家族致癌基因

阅读:4
作者:Adriana Estrada-Bernal, Anh T Le, Andrea E Doak, Vijaya G Tirunagaru, Shevan Silva, Matthew R Bull, Jeff B Smaill, Adam V Patterson, Chul Kim, Stephen V Liu, Robert C Doebele

Conclusions

Experimental data with tarloxotinib validate the novel mechanism of action of a hypoxia-activated prodrug in cancer models by concentrating active drug in the tumor versus normal tissue, and this activity can translate into clinical activity in patients.

Purpose

Approved therapies for EGFR exon 20, ERBB2 mutations, and NRG1 fusions are currently lacking for non-small cell lung cancer and other cancers. Tarloxotinib is a prodrug that harnesses tumor hypoxia to generate high levels of a potent, covalent pan-HER tyrosine kinase inhibitor, tarloxotinib-effector (tarloxotinib-E), within the tumor microenvironment. This tumor-selective delivery mechanism was designed to minimize the dose-limiting toxicities that are characteristic of systemic inhibition of wild-type EGFR. Experimental design: Novel and existing patient-derived cell lines and xenografts harboring EGFR exon 20 insertion mutations, ERBB2 mutations and amplification, and NRG1 fusions were tested in vitro and in vivo with tarloxotinib to determine its impact on cancer cell proliferation, apoptosis, and cell signaling.

Results

Tarloxotinib-E inhibited cell signaling and proliferation in patient-derived cancer models in vitro by directly inhibiting phosphorylation and activation of EGFR, HER2, and HER2/HER3 heterodimers. In vivo, tarloxotinib induced tumor regression or growth inhibition in multiple murine xenograft models. Pharmacokinetic analysis confirmed markedly higher levels of tarloxotinib-E in tumor tissue than plasma or skin. Finally, a patient with lung adenocarcinoma harboring an ERBB2 exon 20 p.A775_G776insYVMA mutation demonstrated a dramatic clinical response to tarloxotinib. Conclusions: Experimental data with tarloxotinib validate the novel mechanism of action of a hypoxia-activated prodrug in cancer models by concentrating active drug in the tumor versus normal tissue, and this activity can translate into clinical activity in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。