Equine mesenchymal stem cell-derived extracellular vesicle productivity but not overall yield is improved via 3-D culture with chemically defined media

利用化学成分明确的培养基进行三维培养,可以提高马间充质干细胞来源的细胞外囊泡的产量,但不能提高总产量。

阅读:1
作者:Angela M Gaesser ,Alexandra I J Usimaki ,Dhvani A Barot ,Renata L Linardi ,Sudheer Molugu ,Luca Musante ,Kyla F Ortved

Abstract

Objective: Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have emerged as a biotherapeutic for osteoarthritis; however, manufacturing large quantities is not practical using traditional monolayer (2-D) culture. We aimed to examine the effects of 3-D and 2-D culture 2 types of media: Dulbecco modified Eagle medium and a commercially available medium (CM) on EV yield. Animals: Banked bone marrow-derived MSCs (BM-MSCs) from 6 healthy, young horses were used. Methods: 4 microcarriers (collagen-coated polystyrene, uncoated polystyrene, collagen-coated dextran, and uncoated dextran) were tested in static and bioreactor cultures, and the optimal microcarrier was chosen. The BM-MSCs were inoculated into a bioreactor with collagen-coated dextran microcarriers at 5,000 cells/cm2 or onto culture dishes at 4,000 cells/cm2 in either Dulbecco modified Eagle medium or CM media. Supernatants were obtained for metabolite and pH analysis. The BM-MSCs were expanded until confluent (2-D) or for 7 days (3-D) when the 48-hour EV collection period commenced using EV-depleted media. Extracellular vesicles were isolated and characterized via nanoparticle tracking analysis, Western blot, transmission electron microscopy, and protein quantification. The BM-MSCs were harvested, quantified, and immunophenotyped. Results: The number of EVs isolated was not improved by 3-D culture or CM media, however, the CM 3-D condition improved the number of EVs produced per BM-MSC over the CM 2-D condition (mean ± SD: 306 ± 99 vs 37 ± 22, respectively). Glucose decreased and lactate and ammonium accumulated in 3-D culture. Surface markers of stemness exhibited reduced expression in 3-D culture. Clinical relevance: Optimization of our 3-D culture methods could improve BM-MSC expansion and thus EV yield.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。