Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer's disease by targeting VAV1 via the MAPK signaling pathway

microRNA-330 通过 MAPK 信号通路靶向 VAV1 对阿尔茨海默病中的淀粉样 β 蛋白生成、氧化应激和线粒体功能障碍产生保护作用

阅读:5
作者:Ying Zhou, Zhou-Fan Wang, Wei Li, Hui Hong, Juan Chen, Yi Tian, Zhao-Yun Liu

Abstract

This study aims to explore the effect of miR-330 targeting VAV1 on amyloid β-protein (Aβ) production, oxidative stress (OS), and mitochondrial dysfunction in Alzheimer's disease (AD) mice through the MAPK signaling pathway. Putative targeted gene of miR-330 was performed by a miRNA target prediction website and dual-luciferase reporter gene assay. AD mouse model was successfully established. Fourteen C57 mice were randomized into AD and control groups. The positive protein expression rate of VAV1 was measured by immunohistochemistry. Neuron cells were assigned into control, blank, negative control (NC), miR-330 mimics, miR-330 inhibitors, siRNA-VAV1, and miR-330 inhibitors + siRNA-VAV1 groups. Expression of miR-330, VAV1, ERK1, JNK1, P38MAPK, Aβ, COX, and lipoprotein receptor-related protein-1 (LRP-1) were determined using RT-qPCR and Western blotting. Colorimetry was applied to measure the levels of OS parameters of superoxide dismutase (SOD) and malondialdehyde (MDA). Aβ production in brain tissue was detected using ELISA, while that in neuron cell was measured by radioimmunoassay. MiR-330 was down-regulated in neuron cells of AD mice and VAV1 was negatively regulated by miR-330. Compared with the control group, the positive protein expression rate of VAV1 was significantly elevated in the AD group. Overexpression of miR-330 decreased the expression of VAV1, ERK1, JNK1, P38MAPK, and Aβ, but increased the expression of COX and LRP-1. AD mice revealed elevated Aβ production and MDA with decreased SOD level. The result indicates that overexpressed miR-330 targeting VAV1 through the MAPK signaling pathway reduces Aβ production and alleviates OS and mitochondrial dysfunction in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。