Treatment with the vascular disrupting agent combretastatin is associated with impaired AQP2 trafficking and increased urine output

使用血管阻断剂考布他汀治疗与 AQP2 运输受损和尿量增加有关

阅读:7
作者:Anja B Bohn, Rikke Nørregaard, Lene Stødkilde, Yan Wang, Lotte B Bertelsen, Robert A Fenton, Vladimir V Matchkov, Elena V Bouzinova, Michael R Horsman, Jørgen Frøkiær, Hans Stødkilde-Jørgensen

Abstract

Combretastatin A-4 disodium phosphate (CA4P) is a vascular disrupting agent known to mediate its effects primarily on tumor blood vessels. CA4P has previously been shown to induce a significant increase in mean arterial blood pressure and in hemoglobin concentration in mice. In the present study, we examined whether this is associated with a general leakage of water into certain tissues or with changes in renal water handling. Munich-Wistar rats received either CA4P (30 mg/kg body wt) or saline intraperitoneally as a bolus injection. One hour later, hemoglobin concentration and mean blood pressure increased significantly. MRI showed no significant changes in tissue water content following CA4P administration. However, urine output and salt excretion increased 1 h after CA4P treatment, without changes in urinary and medullary osmolality. Aquaporin 2 (AQP2) mRNA levels in kidney inner medulla did not change 1 h after CA4P treatment, but semiquantitative confocal laser-scanning microscopy analysis demonstrated a decrease in phosphorylated AQP2 (pS256-AQP2) apical distribution within the collecting ducts of CA4P-treated rats compared with the characteristic apical localization in control rats. Furthermore, we demonstrated that CA4P cause disruption of microtubules and a weaker apical labeling of pS256-AQP2 in collecting duct principal cells within 1 h. In conclusion, our data indicate that water escapes from the vascular system after CA4P treatment, and it may take place primarily through a renal mechanism. The CA4P-mediated increase in urine output seems to be a local effect in the collecting ducts due to reduced AQP2 trafficking to the apical plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。