Axonal plasticity of age-defined dentate granule cells in a rat model of mesial temporal lobe epilepsy

颞叶内侧癫痫大鼠模型中年龄定义的齿状颗粒细胞的轴突可塑性

阅读:6
作者:A L Althaus, H Zhang, J M Parent

Abstract

Dentate granule cell (DGC) mossy fiber sprouting (MFS) in mesial temporal lobe epilepsy (mTLE) is thought to underlie the creation of aberrant circuitry which promotes the generation or spread of spontaneous seizure activity. Understanding the extent to which populations of DGCs participate in this circuitry could help determine how it develops and potentially identify therapeutic targets for regulating aberrant network activity. In this study, we investigated how DGC birthdate influences participation in MFS and other aspects of axonal plasticity using the rat pilocarpine-induced status epilepticus (SE) model of mTLE. We injected a retrovirus (RV) carrying a synaptophysin-yellow fluorescent protein (syp-YFP) fusion construct to birthdate DGCs and brightly label their axon terminals, and compared DGCs born during the neonatal period with those generated in adulthood. We found that both neonatal and adult-born DGC populations participate, to a similar extent, in SE-induced MFS within the dentate gyrus inner molecular layer (IML). SE did not alter hilar MF bouton density compared to sham-treated controls, but adult-born DGC bouton density was greater in the IML than in the hilus after SE. Interestingly, we also observed MF axonal reorganization in area CA2 in epileptic rats, and these changes arose from DGCs generated both neonatally and in adulthood. These data indicate that both neonatal and adult-generated DGCs contribute to axonal reorganization in the rat pilocarpine mTLE model, and indicate a more complex relationship between DGC age and participation in seizure-related plasticity than was previously thought.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。