A dynamical systems model for the measurement of cellular senescence

测量细胞衰老的动态系统模型

阅读:5
作者:Daniel Galvis, Darren Walsh, Lorna W Harries, Eva Latorre, James Rankin

Abstract

Senescent cells provide a good in vitro model to study ageing. However, cultures of 'senescent' cells consist of a mix of cell subtypes (proliferative, senescent, growth-arrested and apoptotic). Determining the proportion of senescent cells is crucial for studying ageing and developing new anti-degenerative therapies. Commonly used markers such as doubling population, senescence-associated β-galactosidase, Ki-67, γH2AX and TUNEL assays capture diverse and overlapping cellular populations and are not purely specific to senescence. A newly developed dynamical systems model follows the transition of an initial culture to senescence tracking population doubling, and the proportion of cells in proliferating, growth-arrested, apoptotic and senescent states. Our model provides a parsimonious description of transitions between these states accruing towards a predominantly senescent population. Using a genetic algorithm, these model parameters are well constrained by an in vitro human primary fibroblast dataset recording five markers at 16 time points. The computational model accurately fits to the data and translates these joint markers into the first complete description of the proportion of cells in different states over the lifetime. The high temporal resolution of the dataset demonstrates the efficacy of strategies for reconstructing the trajectory towards replicative senescence with a minimal number of experimental recordings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。