A novel large animal model of posttraumatic osteoarthritis induced by inflammation with mechanical stability

一种由具有机械稳定性的炎症引起的创伤后骨关节炎的新型大型动物模型

阅读:4
作者:Changqi Sun, Kenny Chang, Braden C Fleming, Brett D Owens, Jillian E Beveridge, Andrew Gage, Rachel C Talley-Bruns, Scott McAllister, Meggin Q Costa, Megan P Pinette, Madalyn Hague, Janine Molino, Ying Xiao, Shaolei Lu, Lei Wei

Conclusions

The mIAD model induced PTOA through inflammation without affecting gait mechanics. This large animal model has significant applications for evaluating the role of inflammation in PTOA and for developing therapies aimed at reducing inflammation following joint injury.

Methods

Twenty-four Yucatan minipigs were randomized into the mIAD (n=12) or sham control group (n=12). mIAD animals had two osseous tunnels drilled into each of the tibia and femur adjacent to the anterior cruciate ligament (ACL) attachment sites on the left hind knee. Surgical and contralateral limbs were harvested 15 weeks post-surgery. Cartilage degeneration was evaluated macroscopically and histologically. Synovial changes were evaluated histologically. Interleukin-1 beta (IL-1β), nuclear factor kappa B (NF-κB), and tumor necrosis factor alpha (TNF-α) mRNA expression levels in the synovial membrane were measured using quantitative real-time polymerase chain reaction. IL-1β and NF-κB levels in chondrocytes were assessed using immunohistochemistry. Load asymmetry during gait was recorded by a pressure-sensing walkway system before and after surgery.

Results

The mIAD surgical knees demonstrated greater gross and histological cartilage damage than contralateral (P<.01) and sham knees (P<.05). Synovitis was present only in the mIAD surgical knee. Synovial inflammatory marker (IL-1β, NF-κB, and TNF-α) expression was three times higher in the mIAD surgical knee than the contralateral (P<.05). Chondrocyte IL-1β and NF-κB levels were highest in the mIAD surgical knee. In general, there were no significant changes in gait. Conclusions: The mIAD model induced PTOA through inflammation without affecting gait mechanics. This large animal model has significant applications for evaluating the role of inflammation in PTOA and for developing therapies aimed at reducing inflammation following joint injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。