A nonlinear viscoelastic constitutive model with damage and experimental validation for composite solid propellant

复合固体推进剂非线性粘弹性损伤本构模型及实验验证

阅读:5
作者:Hui Li, Jin-Sheng Xu, Xiong Chen, Jun-Fa Zhang, Juan Li

Abstract

The development of a nonlinear viscoelastic constitutive model of composite solid propellant (CSP) coupled with effects of strain rate and confining pressure is essential to assess the reliability of solid propellant grains during ignition operation process. In the present work, a nonlinear viscoelastic constitutive model with novel energy-based damage initiation criterion and evolution model was firstly proposed to describe the coupled effects of confining pressure and strain rate on mechanical responses of CSP. In the developed damage initiation criterion and evolution model, the linear viscoelastic strain energy density was introduced as the damage driving force, and the coupled effects of strain rate, damage history and confining pressure on damage growth were taken into account. Then, uniaxial tensile tests from low strain rates to medium strain rates and various confining pressures, and stress relaxation tests were conducted using a self-made active confining pressure device. Finally, the identification procedures of model parameters and validation results of the constitutive model were presented. Moreover, the master curve of damage initiation parameter was constructed through the time-pressure superposition principle (TPSP). The results show that the developed nonlinear constitutive model is capable of predicting the stress-strain responses of CSP under different strain rates and confining pressures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。