Caloric restriction increases the resistance of aged heart to myocardial ischemia/reperfusion injury via modulating AMPK-SIRT1-PGC1a energy metabolism pathway

热量限制通过调节 AMPK-SIRT1-PGC1a 能量代谢通路增强老年心脏对心肌缺血/再灌注损伤的抵抗力

阅读:4
作者:Zhijia Guo #, Meng Wang #, Xiaodong Ying, Jiyu Yuan, Chenggang Wang, Wenjie Zhang, Shouyuan Tian, Xiaoyan Yan

Abstract

A large number of data suggest that caloric restriction (CR) has a protective effect on myocardial ischemia/reperfusion injury (I/R) in the elderly. However, the mechanism is still unclear. In this study, we created the I/R model in vivo by ligating the mice left coronary artery for 45 min followed by reperfusion. C57BL/6J wild-type mice were randomly divided into a young group fed ad libitum (y-AL), aged fed ad libitum (a-AL) and aged calorie restriction group (a-CR, 70% diet restriction), and fed for 6 weeks. The area of myocardial infarction was measured by Evan's blue-TTC staining, plasma cholesterol content quantified by ELISA, fatty acids and glucose measured by Langendorff working system, as well as protein expression of AMPK/SIRT1/PGC1a signaling pathway related factors in myocardial tissue detected by immunoblotting. Our results showed that CR significantly reduced infarct size in elderly mice after I/R injury, promoted glycolysis regardless of I/R injury, and restored myocardial glucose uptake in elderly mice. Compared with a-AL group, CR significantly promoted the expression of p-AMPK, SIRT1, p-PGC1a, and SOD2, but decreased PPARγ expression in aged mice. In conclusion, our results suggest that CR protects elderly mice from I/R injury by altering myocardial substrate energy metabolism via the AMPK/SIRT1/PGC1a pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。