Nature-Inspired Effects of Naturally Occurring Trace Element-Doped Hydroxyapatite Combined with Surface Interactions of Mineral-Apatite Single Crystals on Human Fibroblast Behavior

天然存在的微量元素掺杂羟基磷灰石与矿物-磷灰石单晶表面相互作用对人类成纤维细胞行为的自然启发效应

阅读:4
作者:Malgorzata Tyszka-Czochara, Marzena Suder, Agnieszka Dołhańczuk-Śródka, Małgorzata Rajfur, Katarzyna Grata, Michał Starosta, Agnieszka Jagoda-Pasternak, Wiktor Kasprzyk, Anna K Nowak, Saeid Ahmadzadeh, Dorota Kopeć, Piotr Suryło, Tomasz Świergosz, Katarzyna M Stadnicka

Abstract

Innovative engineering design for biologically active hydroxyapatites requires enhancing both mechanical and physical properties, along with biocompatibility, by doping with appropriate chemical elements. Herein, the purpose of this investigation was to evaluate and elucidate the model of naturally occurring hydroxyapatite and the effects of doped trace elements on the function of normal human fibroblasts, representing the main cells of connective tissues. The substrates applied (geological apatites with hexagonal prismatic crystal habit originated from Slyudyanka, Lake Baikal, Russia (GAp) and from Imilchil, The Atlas Mountains, Morocco (YAp)) were prepared from mineral natural apatite with a chemical composition consistent with the building blocks of enamel and enriched with a significant F- content. Materials in the form of powders, extracts and single-crystal plates have been investigated. Moreover, the effects on the function of fibroblasts cultured on the analyzed surfaces in the form of changes in metabolic activity, proliferation and cell morphology were evaluated. Apatite plates were also evaluated for cytotoxicity and immune cell activation capacity. The results suggest that a moderate amount of F- has a positive effect on cell proliferation, whereas an inhibitory effect was attributed to the Cl- concentration. It was found that for (100) GAp plate, fibroblast proliferation was significantly increased, whereas for (001) YAp plate, it was significantly reduced, with no cytotoxic effect and no immune response from macrophages exposed to these materials. The study of the interaction of fibroblasts with apatite crystal surfaces provides a characterization relevant to medical applications and may contribute to the design of biomaterials suitable for medical applications and the evaluation of their bioavailability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。