The Role of miR-126 in Critical Limb Ischemia Treatment Using Adipose-Derived Stem Cell Therapeutic Factor Concentrate and Extracellular Matrix Microparticles

miR-126 在使用脂肪干细胞治疗因子浓缩物和细胞外基质微粒治疗严重肢体缺血中的作用

阅读:8
作者:Václav Procházka, Jana Jurčíková, Kateřina Vítková, Lubomír Pavliska, Ludmila Porubová, Ondrej Lassák, Piotr Buszman, Carlos A Fernandez, František Jalůvka, Iveta Špačková, Ivo Lochman, Martin Procházka, Mária Janíková, Zdeněk Tauber, Jana Franková, Martin Lachnit, Michael C Hiles, Brian H Johnstone

Abstract

BACKGROUND Paracrine factors secreted by adipose-derived stem cells can be captured, fractionated, and concentrated to produce therapeutic factor concentrate (TFC). The present study examined whether TFC effects could be enhanced by combining TFC with a biological matrix to provide sustained release of factors in the target region. MATERIAL AND METHODS Unilateral hind limb ischemia was induced in rabbits. Ischemic limbs were injected with either placebo control, TFC, micronized small intestinal submucosa tissue (SIS), or TFC absorbed to SIS. Blood flow in both limbs was assessed with laser Doppler perfusion imaging. Tissues harvested at Day 48 were assessed immunohistochemically for vessel density; in situ hybridization and quantitative real-time PCR were employed to determine miR-126 expression. RESULTS LDP ratios were significantly elevated, compared to placebo control, on day 28 in all treatment groups (p=0.0816, p=0.0543, p=0.0639, for groups 2-4, respectively) and on day 36 in the TFC group (p=0.0866). This effect correlated with capillary density in the SIS and TFC+SIS groups (p=0.0093 and p=0.0054, respectively, compared to placebo). A correlation was observed between miR-126 levels and LDP levels at 48 days in SIS and TFC+SIS groups. CONCLUSIONS A single bolus administration of TFC and SIS had early, transient effects on reperfusion and promotion of ischemia repair. The effects were not additive. We also discovered that TFC modulated miR-126 levels that were expressed in cell types other than endothelial cells. These data suggested that TFC, alone or in combination with SIS, may be a potent therapy for patients with CLI that are at risk of amputation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。