Dominance of flow-mediated constriction over flow-mediated dilatation in the rat carotid artery

大鼠颈动脉中血流介导的收缩相对于血流介导的扩张的优势

阅读:10
作者:John Craig, William Martin

Background and purpose

The shearing forces generated by flow generally evoke dilatation in systemic vessels but constriction in the cerebral circulation. The aim of this study was to determine the effects of flow on the conduit artery delivering blood to the brain in the rat, that is, the carotid artery. Experimental approach: Carotid artery segments were mounted in a pressure myograph and pressurized to 100 mmHg. Changes in vessel diameter to flow (0.5-10 mL·min⁻¹ for 2-10 min) at constant pressure were then measured using a video dimension analyser. Key

Purpose

The shearing forces generated by flow generally evoke dilatation in systemic vessels but constriction in the cerebral circulation. The aim of this study was to determine the effects of flow on the conduit artery delivering blood to the brain in the rat, that is, the carotid artery. Experimental approach: Carotid artery segments were mounted in a pressure myograph and pressurized to 100 mmHg. Changes in vessel diameter to flow (0.5-10 mL·min⁻¹ for 2-10 min) at constant pressure were then measured using a video dimension analyser. Key

Results

Following the induction of tone, the onset of flow evoked a transient dilatation followed by a powerful constriction that was sustained until the termination of flow. Endothelial denudation or treatment with indomethacin, N(G)-nitro-L-arginine methyl ester, or the combination of apamin and TRAM-34 showed that the initial flow-mediated dilatation arose from the combined actions of endothelium-derived NO and endothelium-derived hyperpolarizing factor (EDHF). The flow-mediated constriction, which increased in magnitude with increasing flow rate and duration of flow, was also endothelium dependent, but was unaffected by treatment with superoxide dismutase, BQ-123, indomethacin, HET0016 or carbenoxolone. Flow-mediated constriction therefore appeared not to involve superoxide anion, endothelin-1, a COX product, 20-HETE or gap-junctional communication. Conclusions and implications: Although a weak, transient flow-mediated dilatation is observed in the rat carotid artery, the dominant response to flow is a powerful and sustained constriction. Whether this flow-mediated constriction in the carotid artery serves as an extracranial mechanism to regulate cerebral blood flow remains to be determined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。