A comparison of DNA repair pathways to achieve a site-specific gene modification of the Bruton's tyrosine kinase gene

比较 DNA 修复途径以实现布鲁顿酪氨酸激酶基因位点特异性基因修饰

阅读:5
作者:David H Gray, Jasmine Santos, Alexandra Grace Keir, Isaac Villegas, Simon Maddock, Edward C Trope, Joseph D Long, Caroline Y Kuo

Abstract

Gene editing utilizing homology-directed repair has advanced significantly for many monogenic diseases of the hematopoietic system in recent years but has also been hindered by decreases between in vitro and in vivo gene integration rates. Homology-directed repair occurs primarily in the S/G2 phases of the cell cycle, whereas long-term engrafting hematopoietic stem cells are typically quiescent. Alternative methods for a targeted integration have been proposed including homology-independent targeted integration and precise integration into target chromosome, which utilize non-homologous end joining and microhomology-mediated end joining, respectively. Non-homologous end joining occurs throughout the cell cycle, while microhomology-mediated end joining occurs predominantly in the S phase. We compared these pathways for the integration of a corrective DNA cassette at the Bruton's tyrosine kinase gene for the treatment of X-linked agammaglobulinemia. Homology-directed repair generated the most integration in K562 cells; however, synchronizing cells into G1 resulted in the highest integration rates with homology-independent targeted integration. Only homology-directed repair produced seamless junctions, making it optimal for targets where insertions and deletions are impermissible. Bulk CD34+ cells were best edited by homology-directed repair and precise integration into the target chromosome, while sorted hematopoietic stem cells contained similar integration rates using all corrective donors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。