Phosphorylation of Ser6 in hnRNPA1 by S6K2 regulates glucose metabolism and cell growth in colorectal cancer

S6K2 对 hnRNPA1 中 Ser6 的磷酸化调节结直肠癌的葡萄糖代谢和细胞生长

阅读:6
作者:Yan Sun, Man Luo, Guilin Chang, Weiying Ren, Kefen Wu, Xi Li, Jiping Shen, Xiaoping Zhao, Yu Hu

Abstract

Abnormal glucose metabolism is critical in colorectal cancer (CRC) development. Expression of the pyruvate kinase (PK) M2 isoform, rather than the PKM1 isoform, serves important functions in reprogramming the glucose metabolism of cancer cells. Preferential expression of PKM2 is primarily driven by alternative splicing, which is coordinated by a group of splicing factors including heterogeneous nuclear ribonucleoprotein (hnRNP)A1, hnRNPA2 and RNA binding motif containing. However, the underlying molecular mechanisms associated with cancer cell expression of PKM2, instead of PKM1, remain unknown. The mRNA levels of PKM isoform and glucose metabolism were analyzed in CRC cells. The results of the present study indicated that S6 kinase 2 (S6K2) promotes glycolysis and growth of CRC cells by regulating alternative splicing of the PKM gene. In addition, chromatin immunoprecipitation assay indicated that S6K2 phosphorylation of Ser6 of hnRNPA1 facilitated hnRNPA1 binding to the splicing site of the PKM gene. As a result, cancer cells preferentially expressed the PKM2 isoform, instead of the PKM1 isoform. Furthermore, Cox regression analysis demonstrated that the phosphorylation of Ser6 of hnRNPA1 was a predictor of poor prognosis for patients with CRC. Therefore, the results of the present study revealed that the phosphorylation of Ser6 in hnRNPA1 by S6K2 was a novel mechanism underlying glucose metabolic reprogramming, and suggested that S6K2 is a potential therapeutic target for CRC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。