A simple and highly purified method for isolation of glomeruli from the mouse kidney

一种从小鼠肾脏中分离肾小球的简单且高度纯化的方法

阅读:5
作者:Honglian Wang, Jingyi Sheng, Huijun He, Xiaocui Chen, Jinhong Li, Ruizhi Tan, Li Wang, Hui-Yao Lan

Abstract

Highly purified mouse glomeruli are of great value for studying glomerulus-associated kidney diseases. Here, we developed a simple and rapid procedure for mouse glomerular isolation with large quantity and high purity based on the combination of size-selective sieving and differential adhesion techniques, which we termed the "differential adhesion method." In this method, mouse renal cortices were minced and digested with collagenase. Glomeruli were disassociated from tubules by successive sieving through 105-, 75-, and 40-μm cell strainers. The retained glomeruli-rich preparation on the 40-μm strainer was rinsed into a cell culture dish to allow tubules to adhere quickly to the dish while leaving most glomeruli floating (termed "differential adhesion"). The floating glomerular fraction was then subjected to another wash through the 40-μm strainer followed by an additional differential adhesion step to obtain highly purified glomeruli with yields of 8,357 ± 575 and purity of 96.1 ± 1.8% from one adult C57BL/6 mouse. The purity of the isolated glomeruli was further confirmed by high expression of the podocyte marker nephrin without detectable tubular marker cadherin-16. Importantly, we also found that although both the quantity and purity of the isolated glomeruli by this and the established Dynabeads method were comparable, glomeruli isolated by the current method showed much less inflammatory stress in terms of proinflammatory cytokine expression than the Dynabeads method. In conclusion, we established a newly mouse glomerular isolation method that is simple, rapid, cost effective, and productive. It provides an advanced methodology for research into glomerulus-related kidney diseases in the mouse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。