Adenoviral delivery of an immunomodulatory protein to the tumor microenvironment controls tumor growth

腺病毒将免疫调节蛋白递送至肿瘤微环境以控制肿瘤生长

阅读:6
作者:Patrick O'Connell, Maja K Blake, Yuliya Pepelyayeva, Sean Hyslop, Sarah Godbehere, Ariana M Angarita, Cristiane Pereira-Hicks, Andrea Amalfitano, Yasser A Aldhamen

Abstract

Targeted modulation of the immune system against tumors can achieve responses in otherwise refractory cancers, which has spurred efforts aimed at optimizing such strategies. To this end, we have previously investigated cancer immunotherapy approaches using recombinant adenovirus vectors, as well as via modulation of the self-ligand receptor SLAMF7. Here, we present a gene transfer-based immunotherapy approach using targeted expression of a SLAMF7-Fc fusion construct directly into tumors at high concentrations via a recombinant adenoviral vector (Ad-SF7-Fc). Using multiple murine cancer models, we show that Ad-SF7-Fc can induce tumor control via augmentation of innate immunity; specifically, induction of type I interferons and activation of dendritic cells (DCs) and macrophages. Analogously, we find that modulating SLAMF7 signaling via an adenoviral vector expressing its intracellular adaptor, EAT-2, is also capable of inducing tumor control. Finally, we employ a novel in vivo prediction approach and dataset integration with machine learning to dissect how Ad-SF7-Fc modulates cell-type-specific responses in the tumor microenvironment to achieve tumor control. Thus, our novel combinatorial cancer immunotherapy highlights the benefit of multimodal immune modulation and lays a framework for combination with complementary approaches capable of inducing adaptive immune responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。