A chemoproteoinformatics approach demonstrates that aspirin increases sensitivity to MEK inhibition by directly binding to RPS5

化学蛋白质信息学方法表明阿司匹林通过直接与 RPS5 结合来增加对 MEK 抑制的敏感性

阅读:5
作者:Motoki Watanabe, Shogen Boku, Kaito Kobayashi, Yoichi Kurumida, Mamiko Sukeno, Mitsuharu Masuda, Katsura Mizushima, Chikage Kato, Yosuke Iizumi, Kiichi Hirota, Yuji Naito, Michihiro Mutoh, Tomoshi Kameda, Toshiyuki Sakai

Abstract

MEK inhibitors are among the most successful molecularly targeted agents used as cancer therapeutics. However, to treat cancer more efficiently, resistance to MEK inhibitor-induced cell death must be overcome. Although previous genetic approaches based on comprehensive gene expression analysis or RNAi libraries led to the discovery of factors involved in intrinsic resistance to MEK inhibitors, a feasible combined treatment with the MEK inhibitor has not yet been developed. Here, we show that a chemoproteoinformatics approach identifies ligands overcoming the resistance to cell death induced by MEK inhibition as well as the target molecule conferring this resistance. First, we used natural products, perillyl alcohol and sesaminol, which induced cell death in combination with the MEK inhibitor trametinib, as chemical probes, and identified ribosomal protein S5 (RPS5) as their common target protein. Consistently, trametinib induced cell death in RPS5-depleted cancer cells via upregulation of the apoptotic proteins BIM and PUMA. Using molecular docking and molecular dynamics (MD) simulations, we then screened FDA- and EMA-approved drugs for RPS5-binding ligands and found that acetylsalicylic acid (ASA, also known as aspirin) directly bound to RPS5, resulting in upregulation of BIM and PUMA and induction of cell death in combination with trametinib. Our chemoproteoinformatics approach demonstrates that RPS5 confers resistance to MEK inhibitor-induced cell death, and that aspirin could be repurposed to sensitize cells to MEK inhibition by binding to RPS5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。