Iodide modulates protein damage induced by the inflammation-associated heme enzyme myeloperoxidase

碘调节炎症相关血红素酶髓过氧化物酶引起的蛋白质损伤

阅读:5
作者:Luke F Gamon, Simon Dieterich, Marta T Ignasiak, Verena Schrameyer, Michael J Davies

Abstract

Iodide ions (I-) are an essential dietary mineral, and crucial for mental and physical development, fertility and thyroid function. I- is also a high affinity substrate for the heme enzyme myeloperoxidase (MPO), which is involved in bacterial cell killing during the immune response, and also host tissue damage during inflammation. In the presence of H2O2 and Cl-, MPO generates the powerful oxidant hypochlorous acid (HOCl), with excessive formation of this species linked to multiple inflammatory diseases. In this study, we have examined the hypothesis that elevated levels of I- would decrease HOCl formation and thereby protein damage induced by a MPO/Cl-/H2O2 system, by acting as a competitive substrate. The presence of increasing I- concentrations (0.1-10 μM; i.e. within the range readily achievable by oral supplementation in humans), decreased damage to both model proteins and extracellular matrix components as assessed by gross structural changes (SDS-PAGE), antibody recognition of parent and modified protein epitopes (ELISA), and quantification of both parent amino acid loss (UPLC) and formation of the HOCl-biomarker 3-chlorotyrosine (LC-MS) (reduced by ca. 50% at 10 μM I-). Elevated levels of I- ( > 1 μM) also protected against functional changes as assessed by a decreased loss of adhesion (eg. 40% vs. < 22% with >1 μM I-) of primary human coronary artery endothelial cells (HCAECs), to MPO-modified human plasma fibronectin. These data indicate that low micromolar concentrations of I-, which can be readily achieved in humans and are readily tolerated, may afford protection against cell and tissue damage induced by MPO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。