ADAM15 protein amplifies focal adhesion kinase phosphorylation under genotoxic stress conditions

ADAM15 蛋白在基因毒性应激条件下增强粘着斑激酶磷酸化

阅读:5
作者:Dorothee Fried, Beate B Böhm, Kristin Krause, Harald Burkhardt

Abstract

ADAM15, a disintegrin and metalloproteinase, is capable of counteracting genotoxic stress-induced apoptosis by the suppression of caspase-3 activation. A cell line expressing the membrane-bound ADAM15 without its cytoplasmic tail, however, lost this anti-apoptotic property, suggesting a crucial role of the intracellular domain as a scaffold for recruitment of survival signal-transducing kinases. Accordingly, an enhanced phosphorylation of FAK at Tyr-397, Tyr-576, and Tyr-861 was detected upon genotoxic stress by camptothecin in ADAM15-transfected T/C28a4 cells, but not in transfectants expressing an ADAM15 mutant without the cytoplasmic tail. Accordingly, a specific binding of the cytoplasmic ADAM15 domain to the C terminus of FAK could be shown by mammalian two-hybrid, pulldown, and far Western studies. In cells expressing full-length ADAM15, a concomitant activation of Src at Tyr-416 was detected upon camptothecin exposure. Cells transfected with a chimeric construct consisting of the extracellular IL-2 receptor α-chain and the cytoplasmic ADAM15 domain were IL-2-stimulated to prove that the ADAM15 tail can transduce a percepted extracellular signal to enhance FAK and Src phosphorylation. Our studies further demonstrate Src binding to FAK but not a direct Src interaction with ADAM15, suggesting FAK as a critical intracellular adaptor for ADAM15-dependent enhancement of FAK/Src activation. Moreover, the apoptosis induction elicited by specific inhibitors (PP2, FAK 14 inhibitor) of FAK/Src signaling was significantly reduced by ADAM15 expression. The newly uncovered counter-regulatory response to genotoxic stress in a chondrocytic survival pathway is potentially also relevant to apoptosis resistance in neoplastic growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。