Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16INK4a

抑制 H3K4 甲基转移酶 MLL1/WDR5 复合物可通过降低 p16INK4a 来减轻缺血再灌注小鼠的肾脏衰老

阅读:9
作者:Hironori Shimoda, Shigehiro Doi, Ayumu Nakashima, Kensuke Sasaki, Toshiki Doi, Takao Masaki

Abstract

Renal function declines with aging and is pathologically characterized by chronic inflammation and fibrosis. Renal senescence is induced not only by aging but also by various stimuli, including ischemia reperfusion injury. Recently, the accumulation of p16INK4a-positive cells in the kidney has been considered a molecular feature of renal senescence, with the p16INK4a gene reportedly regulated by mixed-lineage leukemia 1 (MLL1)/WD-40 repeat protein 5 (WDR5)-mediated histone 3 lysine 4 trimethylation (H3K4me3). Here, we determined whether inhibition of MLL1/WDR5 activity attenuates renal senescence, inflammation, and fibrosis in mice with ischemia reperfusion injury and in cultured rat renal fibroblasts. MM-102 or OICR-9429, both MLL1/WDR5 protein-protein interaction inhibitors, and small interfering RNA (siRNA) for MLL1 or WDR5 suppressed the expression of p16INK4a in mice with ischemia reperfusion injury, accompanied by downregulation of H3K4me3 expression. MM-102 attenuated renal fibrosis and inflammation in the kidney of mice with ischemia reperfusion injury. Moreover, in vitro study showed that transforming growth factor-β1 induced the expression of MLL1, WDR5, H3K4me3, and p16INK4a. Finally, chromatin immunoprecipitation identified the p16INK4a promoter at an H3K4me3 site in renal fibroblasts. Thus, our findings show that H3K4me3 inhibition ameliorates ischemia reperfusion-induced renal senescence along with fibrosis and inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。