A novel P2X2-dependent purinergic mechanism of enteric gliosis in intestinal inflammation

肠道炎症中肠神经胶质增生的 P2X2 依赖性嘌呤能新机制

阅读:7
作者:Reiner Schneider, Patrick Leven, Tim Glowka, Ivan Kuzmanov, Mariola Lysson, Bianca Schneiker, Anna Miesen, Younis Baqi, Claudia Spanier, Iveta Grants, Elvio Mazzotta, Egina Villalobos-Hernandez, Jörg C Kalff, Christa E Müller, Fedias L Christofi, Sven Wehner

Abstract

Enteric glial cells (EGC) modulate motility, maintain gut homeostasis, and contribute to neuroinflammation in intestinal diseases and motility disorders. Damage induces a reactive glial phenotype known as "gliosis", but the molecular identity of the inducing mechanism and triggers of "enteric gliosis" are poorly understood. We tested the hypothesis that surgical trauma during intestinal surgery triggers ATP release that drives enteric gliosis and inflammation leading to impaired motility in postoperative ileus (POI). ATP activation of a p38-dependent MAPK pathway triggers cytokine release and a gliosis phenotype in murine (and human) EGCs. Receptor antagonism and genetic depletion studies revealed P2X2 as the relevant ATP receptor and pharmacological screenings identified ambroxol as a novel P2X2 antagonist. Ambroxol prevented ATP-induced enteric gliosis, inflammation, and protected against dysmotility, while abrogating enteric gliosis in human intestine exposed to surgical trauma. We identified a novel pathogenic P2X2-dependent pathway of ATP-induced enteric gliosis, inflammation and dysmotility in humans and mice. Interventions that block enteric glial P2X2 receptors during trauma may represent a novel therapy in treating POI and immune-driven intestinal motility disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。