Cannabinoid receptor 1 knockout alleviates hepatic steatosis by downregulating perilipin 2

大麻素受体 1 敲除可通过下调周脂素 2 来缓解肝脂肪变性

阅读:5
作者:Karuna Irungbam #, Yuri Churin #, Tomomitsu Matono, Jakob Weglage, Matthias Ocker, Dieter Glebe, Martin Hardt, Alica Koeppel, Martin Roderfeld #, Elke Roeb #

Abstract

The endocannabinoid (EC) system has been implicated in the pathogenesis of several metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). With the current study we aimed to verify the modulatory effect of endocannabinoid receptor 1 (CB1)-signaling on perilipin 2 (PLIN2)-mediated lipophagy. Here, we demonstrate that a global knockout of the cannabinoid receptor 1 gene (CB1-/-) reduced the expression of the lipid droplet binding protein PLIN2 in the livers of CB1-/- and hepatitis B surface protein (HBs)-transgenic mice, which spontaneously develop hepatic steatosis. In addition, the pharmacologic activation and antagonization of CB1 in cell culture also caused an induction or reduction of PLIN2, respectively. The decreased PLIN2 expression was associated with suppressed lipogenesis and triglyceride (TG) synthesis and enhanced autophagy as shown by increased colocalization of LC3B with lysosomal-associated membrane protein 1 (LAMP1) in HBs/CB1-/- mice. The induction of autophagy was further supported by the increased expression of LAMP1 in CB1-/- and HBs/CB1-/- mice. LAMP1 and PLIN2 were co-localized in HBs/CB1-/- indicating autophagy of cytoplasmic lipid droplets (LDs) i.e., lipophagy. Lipolysis of lipid droplets was additionally indicated by elevated expression of lysosomal acid lipase. In conclusion, these results suggest that loss of CB1 signaling leads to reduced PLIN2 abundance, which triggers lipophagy. Our new findings about the association between CB1 signaling and PLIN2 may stimulate translational studies analyzing new diagnostic and therapeutic options for NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。