Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus

系统性红斑狼疮中 microRNA-142-3p/5p 表达降低导致 CD4+ T 细胞活化和 B 细胞过度刺激

阅读:6
作者:Shu Ding, Yunsheng Liang, Ming Zhao, Gongping Liang, Hai Long, Sha Zhao, Yu Wang, Heng Yin, Peng Zhang, Qing Zhang, Qianjin Lu

Conclusion

The results of this study indicate that reduced expression of miR-142-3p/5p in the CD4+ T cells of patients with SLE causes T cell activity and B cell hyperstimulation.

Methods

MicroRNA-142-3p/5p expression levels were determined by real-time quantitative polymerase chain reaction, and potential target genes were verified using luciferase reporter gene assays. The effects of miR-142-3p/5p on T cell function were assessed by transfection with miR-142-3p/5p inhibitors or mimics. Histone modifications and methylation levels within a putative regulatory region of the miR-142 locus were detected by chromatin immunoprecipitation assay and bisulfite sequencing, respectively.

Objective

To examine the role of microRNA-142-3p/5p (miR-142-3p/5p) in the development of autoimmunity in patients with systemic lupus erythematosus (SLE).

Results

We confirmed that miR-142-3p and miR-142-5p were significantly down-regulated in SLE CD4+ T cells compared with healthy controls and observed that miR-142-3p/5p levels were inversely correlated with the putative SLE-related targets signaling lymphocytic activation molecule-associated protein (SAP), CD84, and interleukin-10 (IL-10). We demonstrated that miR-142-3p and miR-142-5p directly inhibit SAP, CD84, and IL-10 translation, and that reduced miR-142-3p/5p expression in CD4+ T cells can significantly increase protein levels of these target genes. Furthermore, inhibiting miR-142-3p/5p in healthy donor CD4+ T cells caused T cell overactivation and B cell hyperstimulation, whereas overexpression of miR-142-3p/5p in SLE CD4+ T cells had the opposite effect. We also observed that the decrease in miR-142 expression in SLE CD4+ T cells correlated with changes to histone modifications and DNA methylation levels upstream of the miR-142 precursor sequence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。