Idebenone improves motor dysfunction, learning and memory by regulating mitophagy in MPTP-treated mice

艾地苯通过调节 MPTP 治疗小鼠的线粒体自噬改善运动功能障碍、学习和记忆

阅读:10
作者:Junqiang Yan, Wenjie Sun, Mengmeng Shen, Yongjiang Zhang, Menghan Jiang, Anran Liu, Hongxia Ma, Xiaoyi Lai, Jiannan Wu

Abstract

The progression of Parkinson's disease (PD) is often accompanied by the loss of substantia nigra dopaminergic neurons, mitophagy damage, learning, and memory impairment. Idebenone is a therapeutic drug that targets the mitochondria of neurodegenerative diseases, but its role in Parkinson's disease and its pathological mechanism are still unclear. The purpose of this study was to investigate whether idebenone could improve behavioral disorders, especially motor, learning, and memory disorders, in mouse PD models and to explore its molecular mechanism. In the present study, C57BL-6 mice underwent intraperitoneal injection of MPTP (30 mg/kg) once a day for five consecutive days. Then, a 200 mg/kg dose was given as a single daily gavage of idebenone dissolved in water for 21 days after the successful establishment of the subacute MPTP model. Motor, learning, and memory were measured by a water maze and a rotarod test. Our results showed that idebenone could reduce MPTP-induced dopaminergic neuron damage and improve movement disorders, memory, and learning ability, which may be associated with upregulating mitochondrial autophagy-related outer membrane proteins VDAC1 and BNIP3 and activating the Parkin/PINK1 mitochondrial autophagy pathway. To confirm whether idebenone promotes the smooth progression of autophagy, we used eGFP-mCherry-LC3 mice to construct a subacute model of Parkinson's disease and found that idebenone can increase autophagy in dopaminergic neurons in Parkinson's disease. In summary, our results confirm that idebenone can regulate the expression of the mitochondrial outer membrane proteins VDAC1 and BNIP3, activate Parkin/PINK1 mitophagy, promote the degradation of damaged mitochondria, reduce dopaminergic neuron damage, and improve behavioral disorders in Parkinson's disease mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。