A Staphylococcal Glucosaminidase Drives Inflammatory Responses by Processing Peptidoglycan Chains to Physiological Lengths

葡萄球菌氨基葡萄糖苷酶通过将肽聚糖链加工成生理长度来驱动炎症反应

阅读:7
作者:Zachary J Resko, Caleb M Anderson, Michael J Federle, Francis Alonzo 3rd

Abstract

The peptidoglycan of Staphylococcus aureus is a critical cell envelope constituent and virulence factor that subverts host immune defenses and provides protection against environmental stressors. Peptidoglycan chains of the S. aureus cell wall are processed to characteristically short lengths by the glucosaminidase SagB. It is well established that peptidoglycan is an important pathogen-associated molecular pattern (PAMP) that is recognized by the host innate immune system and promotes production of proinflammatory cytokines, including interleukin-1β (IL-1β). However, how bacterial processing of peptidoglycan drives IL-1β production is comparatively unexplored. Here, we tested the involvement of staphylococcal glucosaminidases in shaping innate immune responses and identified SagB as a mediator of IL-1β production. A ΔsagB mutant fails to promote IL-1β production by macrophages and dendritic cells, and processing of peptidoglycan by SagB is essential for this response. SagB-dependent IL-1β production by macrophages is independent of canonical pattern recognition receptor engagement and NLRP3 inflammasome-mediated caspase activity. Instead, treatment of macrophages with heat-killed cells from a ΔsagB mutant leads to reduced caspase-independent cleavage of pro-IL-1β, resulting in accumulation of the pro form in the macrophage cytosol. Furthermore, SagB is required for virulence in systemic infection and promotes IL-1β production in a skin and soft tissue infection model. Taken together, our results suggest that the length of S. aureus cell wall glycan chains can drive IL-1β production by innate immune cells through a previously undescribed mechanism related to IL-1β maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。