Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning

通过机器学习定向进化选择性和灵敏性的血清素传感器

阅读:5
作者:Elizabeth K Unger, Jacob P Keller, Michael Altermatt, Ruqiang Liang, Aya Matsui, Chunyang Dong, Olivia J Hon, Zi Yao, Junqing Sun, Samba Banala, Meghan E Flanigan, David A Jaffe, Samantha Hartanto, Jane Carlen, Grace O Mizuno, Phillip M Borden, Amol V Shivange, Lindsay P Cameron, Steffen Sinning, Su

Abstract

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。