Inhibition of the Proteasome Regulator PA28 Aggravates Oxidized Protein Overload in the Diabetic Rat Brain

蛋白酶体调节剂 PA28 的抑制会加重糖尿病大鼠脑中的氧化蛋白超载

阅读:5
作者:Dong-Gui Wu, Yu-Na Wang, Ye Zhou, Han Gao, Bei Zhao

Abstract

Oxidized protein overloading caused by diabetes is one accelerating pathological pathway in diabetic encephalopathy development. To determine whether the PA28-regulated function of the proteasome plays a role in diabetes-induced oxidative damaged protein degradation, brain PA28α and PA28β interference experiments were performed in a high-fat diet (HFD) and streptozotocin (STZ)-induced rat model. The present results showed that proteasome activity was changed in the brains of diabetic rats, but the constitutive subunits were not. In vivo PA28α and PA28β inhibition via adeno-associated virus (AAV) shRNA infection successfully decreased PA28 protein levels and further exacerbated oxidized proteins load by regulating proteasome catalytic activity. These findings suggest that the proteasome plays a role in the elimination of oxidized proteins and that PA28 is functionally involved in the regulation of proteasome activity in vivo. This study suggests that abnormal protein turbulence occurring in the diabetic brain could be explained by the proteasome-mediated degradation pathway. Changes in proteasome activity regulator PA28 could be a reason to induce oxidative aggregation in diabetic brain. Proteasome regulator PA28 inhibition in vivo by AAV vector injection could aggravate oxidized proteins abundance in brain of HFD-STZ diabetic rat model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。