Up-regulation of Hsp60 in response to skeleton eroding band disease but not by algal overgrowth in the scleractinian coral Acropora muricata

珊瑚礁侵蚀带疾病导致 Hsp60 上调,而海藻过度生长则不会影响石珊瑚 Acropora muricata 中的 Hsp60

阅读:6
作者:Davide Seveso, Simone Montano, Giovanni Strona, Ivan Orlandi, Marina Vai, Paolo Galli

Abstract

Heat shock proteins are biomarkers commonly used to determine the effects of abiotic stresses on the physiology of reef building corals. In this study the effectiveness of the Hsp60 as indicator of biotic stresses in the scleractinian coral Acropora muricata was analyzed, considering the whole holobiont. We focused on two biological interactions recognized to be important contributors to coral reef degradation such as a coral disease, the Skeleton eroding band (SEB) caused by the protozoan Halofolliculina corallasia and the algal overgrowth. In the lagoon of Magoodhoo Island (Maldives) fragments of living tissue of A. muricata exposed to these biotic factors were sampled and proteins subjected to Western analysis. The two different biological interactions trigger diverse responses on Hsp60 level. No detectable effect on Hsp60 modulation appeared in colonies subjected to algal overgrowth. On the contrary, corals displayed a robust up-regulation of Hsp60 in the fragments sampled just above the SEB dark band, where the level of Hsp60 was almost twice compared to the control colonies, indicating that the aggressive behavior of the protozoan causes cellular damage also in coral portions neighboring and along the advancing front of the infection. Portions of coral sampled distant to the SEB band showed a Hsp60 level comparable to that observed in healthy colonies. We propose Hsp60 expression as a promising tool to evaluate physiological stress caused by SEB disease in reef corals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。