The miR-623/CXCL12 axis inhibits LPS-induced nucleus pulposus cell apoptosis and senescence

miR-623/CXCL12 轴抑制 LPS 诱导的髓核细胞凋亡和衰老

阅读:6
作者:Hua Zhong, Zhihong Zhou, Lebin Guo, Fusheng Liu, Bowen Zheng, Sheng Bi, Chenjun Tian

Abstract

Nucleus pulposus cell (NPC) is the major cell type maintaining the physiological function of intervertebral discs by producing extracellular matrix (ECM). NPC apoptosis and senescence together contribute to NPC loss, finally leading to intervertebral disc degeneration (IDD). Herein, miR-623 showed to be downregulated within IDD tissue samples according to both bioinformatics and experimental analyses. In LPS-injured NPCs, miR-623 overexpression promoted LPS-suppressed cell proliferation; moreover, miR-623 overexpression inhibited cell apoptosis and senescence, increased ECM secretion, and reduced levels of inflammatory factors. In contrast to miR-623, CXCL12 expression was significantly upregulated in IDD tissues; miR-623 directly bound CXCL12 to inhibit its expression. In LPS-stimulated NPCs, CXCL12 silencing also LPS-induced changes in cell proliferation, cell senescence, ECM secretion, and inflammatory factor levels. More importantly, CXCL12 overexpression aggravated LPS-induced changes and significantly reversed the protective effects of miR-623 overexpression. In conclusion, the miR-623/CXCL12 axis could affect NPC apoptosis and senescence, ECM deposition, and inflammatory factor levels under LPS stimulation in vitro. The p65 signaling might be involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。