Background
The epidermal growth factor receptor (EGFR)-targeted therapies have been tested in the clinic as treatments for head and neck squamous cell carcinoma (HNSCC). Owing to intrinsic or acquired resistance, EGFR-targeted therapies often lead to a low response rate and treatment failure. Interferon-alpha (IFNα) is a chemosensitising agent and multi-functional cytokine with a tumour inhibitory effect. However, the synergic effect of IFNα and EGFR-targeted therapies (erlotinib and nimotuzumab) and their mechanisms in HNSCC remain unclear.
Conclusions
IFNα enhances the effect of EGFR-targeted therapies by upregulating RIG-I, and its expression may represent a predictor of the effectiveness of a combination treatment including IFNα in HNSCC.
Methods
The interactions between IFNα, erlotinib, and nimotuzumab were evaluated in vitro in HNSCC cells. The synergistic effect of IFNα (20 000 IU per day, s.c.), erlotinib (50 mg kg-1 per day, i.g.) and nimotuzumab (10 mg kg-1 per day, i.p.) was further confirmed in vivo using HNSCC xenografts in nude mice. The upregulation of retinoic-acid inducible gene I (RIG-I) induced by IFNα and EGFR-targeted therapies and its mechanism were detected in vitro and in vivo.
Results
IFNα enhances the antitumour effects of erlotinib and nimotuzumab on HNSCC cells both in vitro and in vivo. Importantly, both IFNα and EGFR-targeted therapies promote the expression of RIG-I by activating signal transducers and activators of transcription 1 (STAT1) in HNSCC cells. RIG-I knockdown reduced the sensitivity of HN4 and HN30 cells to IFNα, erlotinib, and nimotuzumab. Moreover, IFNα transcriptionally induced RIG-I expression in HNSCC cells through STAT1. Conclusions: IFNα enhances the effect of EGFR-targeted therapies by upregulating RIG-I, and its expression may represent a predictor of the effectiveness of a combination treatment including IFNα in HNSCC.
