microRNA-103a-3p confers protection against lipopolysaccharide-induced sepsis and consequent multiple organ dysfunction syndrome by targeting HMGB1

microRNA-103a-3p 通过靶向 HMGB1 来预防脂多糖诱发的脓毒症和随之而来的多器官功能障碍综合征

阅读:13
作者:Yongxiang Li, Huiru Zhu, Lingyun Pan, Bo Zhang, Haixia Che

Background

Sepsis and subsequent multiple organ dysfunction syndrome (MODS) have high global incidence and mortality rate, imposing tremendous health burden. microRNAs (miRNAs or miRs) are implicated in the pathogenesis of sepsis and MODS. The

Conclusions

Taken together, our results demonstrated the inhibitory role of miR-103a-3p in sepsis via inhibiting HMGB1 expression.

Methods

A mouse sepsis model was induced by lipopolysaccharide (LPS). Bone marrow-derived macrophages were collected and LPS was used to establish a cellular inflammation model. Targeted binding between miR-103a-3p and HMGB1 was verified by a double luciferase assay and their roles in LPS-induced sepsis were further explored using gain-of-function experiments.

Results

miR-103a-3p was decreased while HMGB1 was increased in sepsis. In LPS-induced mouse sepsis models, the downregulation of HMGB1 was found to result in reductions in NO, TNF-α, IL-1β, IL-6, lung myeloperoxidase activity, pulmonary microvascular albumin leakage, serum alanine aminotransferase, aspartate aminotransferase activity, and lung and liver tissue apoptosis. Additionally, decreased HMGB1 blunted the inflammatory response and increased survival rate of modeled mice. Importantly, HMGB1 was confirmed to a target gene of miR-103a-3p. In cellular inflammation models, miR-103a-3p was found to alleviate LPS-induced sepsis and MODS in vitro by decreasing HMGB1. Conclusions: Taken together, our results demonstrated the inhibitory role of miR-103a-3p in sepsis via inhibiting HMGB1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。