Characterisation of Drug Delivery Efficacy Using Microstructure-Assisted Application of a Range of APIs

使用微结构辅助应用一系列 API 来表征药物输送效率

阅读:9
作者:Raha Rahbari, Ionut Ichim, Ryan Bamsey, Jemma Burridge, Owen J Guy, John Bolodeoku, Michael Graz

Abstract

Polymer-based solid microstructures (MSts) have the potential to significantly increase the quantity and range of drugs that can be administered across the skin. MSt arrays are used to demonstrate their capacity to bypass the skin barrier and enhance permeability by creating microchannels through the stratum corneum, in a minimally invasive manner. This study is designed to demonstrate the ability of MSts to exceed the current boundaries for transdermal delivery of compounds with different molecular weights, partition coefficients, acid dissociation constants, melting points, and water solubilities. In vitro permeation of a range of selected molecules, including acetyl salicylic acid (aspirin), galantamine, selegiline hydrochloride (Sel-HCl), insulin, caffeine, hydrocortisone (HC), hydrocortisone 21-hemisuccinate sodium salt (HC-HS) and bovine serum albumin (BSA) has been studied across excised porcine skin with and without poke and patch application of MSts. Permeation of the molecules was monitored using Franz diffusion cells over 24 h. MSts significantly increased the permeation of all selected molecules up to 40 times, compared to topical applications of the molecules without MSts. The greatest increase in permeation was observed for caffeine with 70 ± 8% permeation and the lowest enhancement was observed for HC with a 2.4 ± 1.3% increase in permeation. The highest obtained flux was BSA (8133 ± 1365 μg/cm2/h) and the lowest flux observed for HC (11 ± 4 μg/cm2/h). BSA and HC also showed the highest (16,275 ± 3078 μg) and the lowest (73 ± 47 μg) permeation amount after 24 h respectively. MSt-treated skin exhibits greatly increased permeation. The molecule parameters (size, acid dissociation constant, partition coefficient and solubility)-traditional hurdles associated with passive diffusion through intact skin-are overcome using MSt skin treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。