Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana

细胞表面受体激酶 FERONIA 与营养传感器 TORC 信号传导有关,控制拟南芥低温下根毛的生长,与低硝酸盐有关

阅读:5
作者:Javier Martínez Pacheco #, Limei Song #, Lenka Kuběnová, Miroslav Ovečka, Victoria Berdion Gabarain, Juan Manuel Peralta, Tomás Urzúa Lehuedé, Miguel Angel Ibeas, Martiniano M Ricardi, Sirui Zhu, Yanan Shen, Mikhail Schepetilnikov, Lyubov A Ryabova, José M Alvarez, Rodrigo A Gutierrez, Guido Grossma

Abstract

Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。