The contribution of the WNT pathway to the therapeutic effects of montelukast in experimental murine airway inflammation induced by ovalbumin and lipopolysaccharide

WNT通路对孟鲁司特治疗卵清蛋白和脂多糖诱发的实验性小鼠气道炎症的治疗作用的贡献

阅读:8
作者:Yesim Kaya-Yasar, Seckin Engin, Elif Nur Barut, Cihan Inan, Ismail Saygin, Ilknur Erkoseoglu, Sena F Sezen

Abstract

The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3β and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3β phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。