The transcriptional programme controlled by Runx1 during early embryonic blood development

早期胚胎血液发育过程中 Runx1 控制的转录程序

阅读:6
作者:Yosuke Tanaka, Anagha Joshi, Nicola K Wilson, Sarah Kinston, Shinichi Nishikawa, Berthold Göttgens

Abstract

Transcription factors have long been recognised as powerful regulators of mammalian development yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches during the early stages of haematopoietic development to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that key regulators are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both Scl/Tal1 and Runx1 in fully specified blood cells, and initiation of CD41 expression in E7.5 embryos is severely compromised in the absence of Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulators is likely to represent a design principle widely applicable to the transcriptional control of mammalian development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。