The Mlc1 Promoter Directs Müller Cell-specific Gene Expression in the Retina

Mlc1 启动子指导视网膜中穆勒细胞特异性基因表达

阅读:6
作者:Yosuke Danjo, Youichi Shinozaki, Akiyo Natsubori, Yuto Kubota, Kenji Kashiwagi, Kenji F Tanaka, Schuichi Koizumi

Conclusions

The Mlc1 promoter allows us to manipulate gene expression in Müller cells without affecting astrocytes in the retina. Translational relevance: Gene manipulation under control of Mlc1 promoter offers novel technique to investigate the role of Müller cells.

Methods

Mlc1-tTA::Yellow-Cameleon-NanotetO/tetO (YC-Nano) mice were used as a reporter line. YC-Nano, a fluorescent protein, was ectopically expressed in the cell type controlled by the Mlc1 promotor. Immunofluorescence staining was used to identify the cell type expressing YC-Nano protein.

Purpose

Because the importance of glia in regulating brain functions has been demonstrated, genetic technologies that manipulate glial cell-specific gene expression in the brain have become essential and have made great progress. However, it is unknown whether the same strategy that is used in the brain can be applied to the retina because retinal glia differs from glia in the brain. Here, we aimed to find a method for selective gene expression in Müller cells (characteristic glial cells in the retina) and identified Mlc1 as a specific promoter of Müller cells.

Results

YC-Nano-positive (+) signals were observed as vertical stalks in the sliced retina and spanned from the nerve fiber layer through the outer nuclear layer. The density of YC-Nano+ cells was higher around the optic nerve head and lower in the peripheral retina. The YC-Nano+ signals colocalized with vimentin, a marker of Müller cells, but not with the cell markers for blood vessels, microglia, neurons, or astrocytes. Conclusions: The Mlc1 promoter allows us to manipulate gene expression in Müller cells without affecting astrocytes in the retina. Translational relevance: Gene manipulation under control of Mlc1 promoter offers novel technique to investigate the role of Müller cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。