Aminoguanidine reduces diabetes-associated cardiac fibrosis

氨基胍减少糖尿病相关的心脏纤维化

阅读:5
作者:Fernando Magdaleno, Chuck Christopher Blajszczak, Claudia Lisette Charles-Niño, Alma Marlene Guadrón-Llanos, Alan Omar Vázquez-Álvarez, Alejandra Guillermina Miranda-Díaz, Natalia Nieto, María Cristina Islas-Carbajal, Ana Rosa Rincón-Sánchez

Abstract

Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. However, the molecular mechanism by which AG reduces AGE-associated damage in diabetes is not well understood. Thus, we investigated whether AG supplementation mitigates oxidative-associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). Forty-five male Wistar rats were divided into three groups: Control, T2DM and T2DM+AG. Rats were fed with a high-fat, high-carbohydrate diet (HFCD) for 2 weeks and rendered diabetic using low-dose streptozotocin (STZ) (20 mg/kg), and one group was treated with AG (20 mg/kg) up to 25 weeks. In vitro experiments were performed in primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG and to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from HFCD and STZ injections. By contrast, AG treatment significantly reduced cardiac fibrosis, α-smooth muscle actin (αSMA) and oxidative-associated Nox4 and Nos2 mRNA expression. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra- and extracellular collagen type I expression and Pdgfb, Tgfβ1 and Col1a1 mRNAs, albeit with similar expression of Tnfα and Il6 mRNAs. This was accompanied by reduced phosphorylation of ERK1/2 and SMAD2/3 but not of AKT1/2/3 and STAT pathways. RAGE blockade further attenuated collagen type I expression in AG-treated myofibroblasts. Thus, AG reduces oxidative stress-associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。