The murine choroid plexus epithelium expresses the 2Cl-/H+ exchanger ClC-7 and Na+/H+ exchanger NHE6 in the luminal membrane domain

小鼠脉络丛上皮在腔膜区域表达 2Cl-/H+ 交换剂 ClC-7 和 Na+/H+ 交换剂 NHE6

阅读:11
作者:Helle H Damkier, Henriette L Christensen, Inga B Christensen, Qi Wu, Robert A Fenton, Jeppe Praetorius

Abstract

The choroid plexus epithelium within the brain ventricles secretes the majority of the cerebrospinal fluid (CSF). The luminal Na+-K+-ATPase acts in concert with a host of other transport proteins to mediate efficient fluid secretion across the epithelium. The CSF contains little protein buffer, but the pH value seems nonetheless maintained within narrow limits, even when faced with acid-base challenges. The involvement of choroid plexus acid-base transporters in CSF pH regulation is highlighted by the expression of several acid-base transporters in the epithelium. The aim of the present study was to identify novel acid-base transporters expressed in the luminal membrane of the choroid plexus epithelium to pave the way for systematic investigations of each candidate transporter in the regulation of CSF pH. Mass spectrometry analysis of proteins from epithelial cells isolated by fluorescence-activated cell sorting identified the Cl-/H+ exchangers ClC-3, -4, -5, and -7 in addition to known choroid plexus acid-base transporters. RT-PCR on FACS isolated epithelial cells confirmed the expression of the corresponding mRNAs, as well as Na+/H+ exchanger NHE6 mRNA. Both NHE6 and ClC-7 were immunolocalized to the luminal plasma membrane domain of the choroid plexus epithelial cells. Dynamic imaging of intracellular pH and membrane potential changes in isolated choroid plexus epithelial cells demonstrated Cl- gradient-driven changes in intracellular pH and membrane potential that are consistent with Cl-/H+ exchange. In conclusion, we have detected for the first time NHE6 and ClC-7 in the choroid plexus, which are potentially involved in pH regulation of the CSF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。