Precise prediction of phase-separation key residues by machine learning

利用机器学习精确预测相分离关键残基

阅读:1
作者:Jun Sun # ,Jiale Qu # ,Cai Zhao # ,Xinyao Zhang ,Xinyu Liu ,Jia Wang ,Chao Wei ,Xinyi Liu ,Mulan Wang ,Pengguihang Zeng ,Xiuxiao Tang ,Xiaoru Ling ,Li Qing ,Shaoshuai Jiang ,Jiahao Chen ,Tara S R Chen ,Yalan Kuang ,Jinhang Gao ,Xiaoxi Zeng ,Dongfeng Huang ,Yong Yuan ,Lili Fan ,Haopeng Yu ,Junjun Ding

Abstract

Understanding intracellular phase separation is crucial for deciphering transcriptional control, cell fate transitions, and disease mechanisms. However, the key residues, which impact phase separation the most for protein phase separation function have remained elusive. We develop PSPHunter, which can precisely predict these key residues based on machine learning scheme. In vivo and in vitro validations demonstrate that truncating just 6 key residues in GATA3 disrupts phase separation, enhancing tumor cell migration and inhibiting growth. Glycine and its motifs are enriched in spacer and key residues, as revealed by our comprehensive analysis. PSPHunter identifies nearly 80% of disease-associated phase-separating proteins, with frequent mutated pathological residues like glycine and proline often residing in these key residues. PSPHunter thus emerges as a crucial tool to uncover key residues, facilitating insights into phase separation mechanisms governing transcriptional control, cell fate transitions, and disease development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。