Cyclotraxin-B, a new TrkB antagonist, and glial blockade by propentofylline, equally prevent and reverse cold allodynia induced by BDNF or partial infraorbital nerve constriction in mice

Cyclotraxin-B(一种新型 TrkB 拮抗剂)和丙戊茶碱对神经胶质细胞的阻断作用,同样可以预防和逆转小鼠 BDNF 或部分眶下神经收缩引起的冷异常性疼痛

阅读:5
作者:Luis Constandil, Mariela Goich, Alejandro Hernández, Laurence Bourgeais, Maxime Cazorla, Michel Hamon, Luis Villanueva, Teresa Pelissier

Abstract

Several lines of evidence indicate that brain-derived neurotrophic factor (BDNF) plays a key role as a central pronociceptive modulator of pain, acting through postsynaptic TrkB receptors that trigger intracellular signaling cascades leading to central sensitization. The overall aim of this study was to investigate to what extent BDNF could participate in the generation and maintenance of trigeminal neuropathic pain. The results showed that acute intracisternal administration of nanogram doses of BDNF in naïve mice elicited long-lasting, dose-related, cold allodynic responses to topical application of acetone onto vibrissal pad skin. The systemic administration of cyclotraxin-B (CTX-B), a new TrkB receptor antagonist, or propentofylline, an inhibitor of glial activation, was able to either prevent or reverse the effects of intracisternal BDNF on cold nociception. In addition, the blockade of TrkB receptor by CTX-B inhibited the mechanisms that either initiate or maintain cold allodynia in the ipsilateral vibrissal pad skin after unilateral constriction of the infraorbital nerve. These observations raise the possibility that BDNF is capable on its own of conveying many features of the signaling mechanisms that underlie central sensitization caused by nerve constriction. Perspective: Although further studies are necessary to examine in detail the mechanisms underlying the strong anti-allodynic action of CTX-B, this compound may represent an interesting lead for the development of novel therapeutic strategies aimed at preventing and/or suppressing central sensitization associated with neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。