Prenatal exposure to diesel exhaust PM2.5 causes offspring β cell dysfunction in adulthood

胎儿时期接触柴油尾气 PM2.5 导致后代成年后 β 细胞功能障碍

阅读:5
作者:Minjie Chen, Shuai Liang, Xiaobo Qin, Li Zhang, Lianglin Qiu, Sufang Chen, Ziying Hu, Yanyi Xu, Wanjun Wang, Yuhao Zhang, Qi Cao, Zhekang Ying

Abstract

Environmental stressors that encounter in early-life and cause abnormal fetal and/or neonatal development may increase susceptibility to non-communicable diseases such as diabetes. Maternal exposure to ambient fine particulate matter (PM2.5) is associated with various fetal abnormalities, suggesting that it may program offspring's susceptibility to diabetes. In the present study, we therefore examined whether maternal exposure to diesel exhaust PM2.5 (DEP), one of the major sources of ambient PM2.5 in urban areas, programs adult offspring's glucose metabolism. Female C57Bl/6J mice were intratracheally instilled with DEP or vehicle throughout a 7-wk preconceptional period, gestation, and lactation, and the glucose homeostasis of their adult male offspring was assessed. Intraperitoneal glucose tolerance test (IPGTT) revealed that the maternal exposure to DEP significantly impaired adult male offspring's glucose tolerance. Unexpectedly, it did not influence their insulin sensitivity, whereas it significantly decreased their glucose-induced insulin secretion (GIIS). This deficit in insulin secretion was corroborated by their significant decrease in arginine-induced insulin secretion. Histological analysis demonstrated that the deficit in insulin secretion was accompanied by the decrease in pancreatic islet and β cell sizes. To differentiate the effects of maternal exposure to DEP before birth and during lactation, some offspring were cross-fostered once born. We did not observe any significant effect of cross-fostering on the glucose homeostasis of adult male offspring and the function and morphology of their β cells. Prenatal exposure to DEP programs the morphology and function of β cells and thus homeostatic regulation of glucose metabolism in adult male offspring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。