Distinctly localized lipid phosphate phosphatases mediate endoplasmic reticulum glycerolipid metabolism in Arabidopsis

拟南芥中独特定位的脂质磷酸酯酶介导内质网甘油脂代谢

阅读:8
作者:Van C Nguyen, Yuki Nakamura

Abstract

Inter-organelle communication is an integral subcellular process in cellular homeostasis. In plants, cellular membrane lipids are synthesized in the plastids and endoplasmic reticulum (ER). However, the crosstalk between these organelles in lipid biosynthesis remains largely unknown. Here, we show that a pair of lipid phosphate phosphatases (LPPs) with differential subcellular localizations is required for ER glycerolipid metabolism in Arabidopsis (Arabidopsis thaliana). LPPα2 and LPPε1, which function as phosphatidic acid phosphatases and thus catalyze the core reaction in glycerolipid metabolism, were differentially localized at ER and chloroplast outer envelopes despite their similar tissue expression pattern. No mutant phenotype was observed in single knockout mutants; however, genetic suppression of these LPPs affected pollen growth and ER phospholipid biosynthesis in mature siliques and seeds with compromised triacylglycerol biosynthesis. Although chloroplast-localized, LPPε1 was localized close to the ER and ER-localized LPPα2. This proximal localization is functionally relevant, because overexpression of chloroplastic LPPε1 enhanced ER phospholipid and triacylglycerol biosynthesis similar to the effect of LPPα2 overexpression in mature siliques and seeds. Thus, ER glycerolipid metabolism requires a chloroplast-localized enzyme in Arabidopsis, representing the importance of inter-organelle communication in membrane lipid homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。