Genetic perturbation of IFN-α transcriptional modulators in human endothelial cells uncovers pivotal regulators of angiogenesis

人类内皮细胞中 IFN-α 转录调节因子的遗传扰动揭示了血管生成的关键调节因子

阅读:7
作者:Francesco Ciccarese, Angela Grassi, Lorenza Pasqualini, Stefania Rosano, Alessio Noghero, Francesca Montenegro, Federico Bussolino, Barbara Di Camillo, Lorenzo Finesso, Gianna Maria Toffolo, Stefania Mitola, Stefano Indraccolo

Abstract

Interferon-α (IFN-α) comprises a family of 13 cytokines involved in the modulation of antiviral, immune, and anticancer responses by orchestrating a complex transcriptional network. The activation of IFN-α signaling pathway in endothelial cells results in decreased proliferation and migration, ultimately leading to suppression of angiogenesis. In this study, we knocked-down the expression of seven established or candidate modulators of IFN-α response in endothelial cells to reconstruct a gene regulatory network and to investigate the antiangiogenic activity of IFN-α. This genetic perturbation approach, along with the analysis of interferon-induced gene expression dynamics, highlighted a complex and highly interconnected network, in which the angiostatic chemokine C-X-C Motif Chemokine Ligand 10 (CXCL10) was a central node targeted by multiple modulators. IFN-α-induced secretion of CXCL10 protein by endothelial cells was blunted by the silencing of Signal Transducer and Activator of Transcription 1 (STAT1) and of Interferon Regulatory Factor 1 (IRF1) and it was exacerbated by the silencing of Ubiquitin Specific Peptidase 18 (USP18). In vitro sprouting assay, which mimics in vivo angiogenesis, confirmed STAT1 as a positive modulator and USP18 as a negative modulator of IFN-α-mediated sprouting suppression. Our data reveal an unprecedented physiological regulation of angiogenesis in endothelial cells through a tonic IFN-α signaling, whose enhancement could represent a viable strategy to suppress tumor neoangiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。