QTL mapping and genomic analyses of earliness and fruit ripening traits in a melon Recombinant Inbred Lines population supported by de novo assembly of their parental genomes

利用亲本基因组从头组装技术对甜瓜重组自交系群体的早熟和果实成熟性状进行 QTL 定位和基因组分析

阅读:5
作者:Elad Oren, Galil Tzuri, Asaf Dafna, Evan R Rees, Baoxing Song, Shiri Freilich, Yonatan Elkind, Tal Isaacson, Arthur A Schaffer, Yaakov Tadmor, Joseph Burger, Edward S Buckler, Amit Gur

Abstract

Earliness and ripening behavior are important attributes of fruits on and off the vine, and affect quality and preference of both growers and consumers. Fruit ripening is a complex physiological process that involves metabolic shifts affecting fruit color, firmness, and aroma production. Melon is a promising model crop for the study of fruit ripening, as the full spectrum of climacteric behavior is represented across the natural variation. Using Recombinant Inbred Lines (RILs) population derived from the parental lines "Dulce" (reticulatus, climacteric) and "Tam Dew" (inodorus, non-climacteric) that vary in earliness and ripening traits, we mapped QTLs for ethylene emission, fruit firmness and days to flowering and maturity. To further annotate the main QTL intervals and identify candidate genes, we used Oxford Nanopore long-read sequencing in combination with Illumina short-read resequencing, to assemble the parental genomes de-novo. In addition to 2.5 million genome-wide SNPs and short InDels detected between the parents, we also highlight here the structural variation between these lines and the reference melon genome. Through systematic multi-layered prioritization process, we identified 18 potential polymorphisms in candidate genes within multi-trait QTLs. The associations of selected SNPs with earliness and ripening traits were further validated across a panel of 177 diverse melon accessions and across a diallel population of 190 F1 hybrids derived from a core subset of 20 diverse parents. The combination of advanced genomic tools with diverse germplasm and targeted mapping populations is demonstrated as a way to leverage forward genetics strategies to dissect complex horticulturally important traits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。